p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.183D4, C4.Q8⋊7C22, C4⋊C4.52C23, (C2×C8).32C23, C2.D8⋊18C22, (C2×C4).290C24, C24.4C4⋊7C2, (C2×D4).79C23, C23.665(C2×D4), (C22×C4).441D4, (C2×Q8).67C23, D4⋊C4⋊18C22, Q8⋊C4⋊20C22, C22.D8⋊11C2, C23.36D4⋊9C2, C23.46D4⋊1C2, C23.47D4⋊1C2, C22⋊C8.14C22, M4(2)⋊C4⋊22C2, C4⋊D4.155C22, C23.48D4⋊11C2, C22.29(C8⋊C22), (C23×C4).560C22, C22.550(C22×D4), C22⋊Q8.160C22, (C22×C4).1006C23, C22.19C24.18C2, C22.18(C8.C22), (C2×M4(2)).72C22, C42⋊C2.123C22, C4.126(C22.D4), C22.40(C22.D4), (C22×C4⋊C4)⋊35C2, C4.100(C2×C4○D4), (C2×C4).486(C2×D4), C2.28(C2×C8⋊C22), C2.28(C2×C8.C22), (C2×C4).485(C4○D4), (C2×C4⋊C4).927C22, (C2×C4○D4).137C22, C2.55(C2×C22.D4), SmallGroup(128,1824)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C22×C4 — C2×C4⋊C4 — C22×C4⋊C4 — C24.183D4 |
Generators and relations for C24.183D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, eae-1=faf=ac=ca, ad=da, bc=cb, ebe-1=fbf=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=cde3 >
Subgroups: 436 in 229 conjugacy classes, 96 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C2×M4(2), C23×C4, C23×C4, C2×C4○D4, C24.4C4, C23.36D4, M4(2)⋊C4, C22.D8, C23.46D4, C23.47D4, C23.48D4, C22×C4⋊C4, C22.19C24, C24.183D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22.D4, C8⋊C22, C8.C22, C22×D4, C2×C4○D4, C2×C22.D4, C2×C8⋊C22, C2×C8.C22, C24.183D4
(2 27)(4 29)(6 31)(8 25)(9 22)(11 24)(13 18)(15 20)
(1 30)(2 27)(3 32)(4 29)(5 26)(6 31)(7 28)(8 25)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 22)(2 16)(3 20)(4 14)(5 18)(6 12)(7 24)(8 10)(9 26)(11 32)(13 30)(15 28)(17 31)(19 29)(21 27)(23 25)
G:=sub<Sym(32)| (2,27)(4,29)(6,31)(8,25)(9,22)(11,24)(13,18)(15,20), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,22)(2,16)(3,20)(4,14)(5,18)(6,12)(7,24)(8,10)(9,26)(11,32)(13,30)(15,28)(17,31)(19,29)(21,27)(23,25)>;
G:=Group( (2,27)(4,29)(6,31)(8,25)(9,22)(11,24)(13,18)(15,20), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,22)(2,16)(3,20)(4,14)(5,18)(6,12)(7,24)(8,10)(9,26)(11,32)(13,30)(15,28)(17,31)(19,29)(21,27)(23,25) );
G=PermutationGroup([[(2,27),(4,29),(6,31),(8,25),(9,22),(11,24),(13,18),(15,20)], [(1,30),(2,27),(3,32),(4,29),(5,26),(6,31),(7,28),(8,25),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,22),(2,16),(3,20),(4,14),(5,18),(6,12),(7,24),(8,10),(9,26),(11,32),(13,30),(15,28),(17,31),(19,29),(21,27),(23,25)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C8⋊C22 | C8.C22 |
kernel | C24.183D4 | C24.4C4 | C23.36D4 | M4(2)⋊C4 | C22.D8 | C23.46D4 | C23.47D4 | C23.48D4 | C22×C4⋊C4 | C22.19C24 | C22×C4 | C24 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.183D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 15 | 9 | 1 | 0 |
0 | 0 | 15 | 9 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 4 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 16 | 5 | 8 |
0 | 0 | 12 | 14 | 7 | 15 |
0 | 0 | 6 | 15 | 16 | 0 |
0 | 0 | 2 | 8 | 16 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 8 | 15 | 0 |
0 | 0 | 0 | 0 | 16 | 1 |
0 | 0 | 10 | 8 | 11 | 4 |
0 | 0 | 10 | 9 | 11 | 4 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,15,15,0,0,0,16,9,9,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,4,12,6,2,0,0,16,14,15,8,0,0,5,7,16,16,0,0,8,15,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,10,10,0,0,8,0,8,9,0,0,15,16,11,11,0,0,0,1,4,4] >;
C24.183D4 in GAP, Magma, Sage, TeX
C_2^4._{183}D_4
% in TeX
G:=Group("C2^4.183D4");
// GroupNames label
G:=SmallGroup(128,1824);
// by ID
G=gap.SmallGroup(128,1824);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,100,2019,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=f*b*f=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*d*e^3>;
// generators/relations